Exploring the potential of vegetation corridors in forest fire hazard reduction at the landscape level: examples from Portugal

João C. Azevedo¹, Anabela Possacos², Rui Dias¹, R. Marrão¹, Carlos Loureiro⁴ & Paulo Fernandes⁴

- 1- Centro de Investigação de Montanha (CIMO), ESAB, Instituto Politécnico de Bragança, Bragança
- 2- Unidade de Gestão Florestal do Nordeste Transmontano, Autoridade Florestal Nacional, Bragança
 - 3- Centro de Investigação e Tecnologias Agro-ambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro, Vila Real

Outline

- Land cover and fire behavior
- Edges and fire behavior
- The case of holm oak (Q. rotundifolia) in Portugal
 - Evidences of fire resistance
 - Test of hypothesis
 - Holm oak woodlands are fire resistant
 - Potential for holm oak fire prevention corridor and network establishment
 - Actual distribution and configuration of holm oak remnants

Land cover and fire behavior

- Fire behaves differently in different land cover classes
 - Flammability
 - Fuel load, size, structure (horizontal and vertical), moisture, etc.
 - Fuel models
 - Basic knowledge for preventive silviculture measures
 - Basic knowledge for fire fighting strategies

Edges and fire behavior

- Fire edges, associated with LULC edges
- Edges as barriers for fire spread
 - Discontinuity in fuel attributes
 - Other factors associated with distribution of vegetation types (water, topography)
- Effects at the landscape level: reduction in total and mean burned area

The case of holm oak woodlands

- Persistence of holm oak (Quercus rotundifolia) woodlands in areas of frequent fires
- Resistance?
 - Evidence
 - Observed fire extinction in woodlands edges
 - Spatial relations between burned areas and unburned holm oak woodlands

1975	2	1447.1	
1976	4	27.0	
1977	2	333.6	
1978	10	1637.5	
1979	2	164.6	
1980	3	295.2	
1981	2	156.0	
1982	1	40.3	
1983	3	154.5	
1984	18	522.2	
1985	13	829.0	
1986	9	215.1	
1987	2	141.9	
1988	1	33.5	
1989	16	262.4	
1990	8	133.3	
1991	3	46.1	
1992	0.0	0.0	
1993	0.0	0.0	

8

6

3

6

8

8

2

2

1

0.0

10

14

Year

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

Number

Area

(ha)

302.6

111.6

555.0

36.8

203.8

139.4

843.4

176.4

18.2

0.0

20.5

10.8

Area

(%)

25.3 0.5 5.8 28.6 2.9 5.2 2.7 0.7 2.7 9.1

14.5

3.8

2.5 0.6

4.62.30.8

0.0

0.0

5.3

1.9

9.7

0.6

3.6

2.4 14.7

3.1

0.3

0.0

0.4

0.2

Source: Parque Natural de Montesinho

Wildfires in the

França parish,

Bragança

1975 - 2005

Types and frequencies of fire-holm oak contacts since 1990 at the PNM

Types and frequencies of fire-holm oak contacts since 1990 in the District

Edges of Holm aok woods and fire

-coberto

 Azevedo, J. & F. Caçador. 2000. Bordaduras de bosques de *Quercus rotundifolia* Lam. no Parque Natural de Montesinho. Quercetea 1: 126-137

The case of holm oak woodlands

- Persistence of holm oak (Quercus rotundifolia) woodlands in areas of frequent fires
 - Hypothesis: "Holm oak woodlands are fire resistant due to sudden changes in fire behavior taking place at edges"
 - Test: Fire behavior modeling and simulation based on vegetation and fuel structure across shrublandholm oak woodland edges

Methods

- Data collection
 - 12 sampling transects (60m) perpendicular to the holm oak edges with known fire contact
 - 5 locations in the Deilão, S. Julião, Petisqueira, Labiados parishes (Bragança)
- Quantification of vegetation parameters along the sampling lines at distances -20, -10, -5, -1, 0, 1, 5, 10, 20, and 40m
 - Plant composition
 - Plant cover and height: herbs, shrubs and trees
 - Forest litter composition and thickness
- Fuel model construction for each point in the sampling transect
- Fire behavior simulation for each point of the sampling transect with BehavePlus

Study area

Methods

Sampling scheme

BehavePlus Fire Modelling System (USDA Forest Service)

Implements the Rothermel (1972) semi-empirical fire propagation model and associate models (Albini 1976)

Inputs

- Fuel model (quantitative description of fuel based on vegetation attributes)
- Wind speed
- Slope
- Fuel moisture by category (dead, alive) and size class

Basic outputs

- Calculation of fire behavior attributes for a set of uniform conditions in a particular location:
 - Maximum rate of spread (m/min)
 - Flame length (m)
 - Fire line Intensity (kW/m)

Global results

Fire extinction probability

Results based on 25 simulations per wind speed/moisture content combination and fire extinction thresholds for fire in the region

Conclusion

- There is a sudden reduction in intensity, flame length and rate of spread at woodland edges resulting from structural variation
- Contrast between outside-inside conditions increases with age of adjacent shrublands but fire behavior inside the woodlands seems to be insensitive to outside shrub development
- These variations in fire behavior can contribute to explain fire self-extinction at edges and resistance of these woodlands

Next step

- If this is true, then holm oak woodlands present high potential for fire hazard reduction at the landscape level
- Questions:
 - What is the actual distribution of holm oak woodlands?
 - Where do woodlands seem to be more resistant/resilient to fire? In which conditions?

Procedure

- Photointerpretation of orthophotomaps
- Mapping of holm oak woodlands
 - Natura 2000 Montesinho/Nogueira Site
 - Bragança district
- Description holm oak woodland patches in terms of
 - Size and shape
 - Geology and soils
 - Slope and aspect
 - Position in the slope
 - Proximity to streams

Study areas

Montesinho/Nogueira site (PTCON0002)

Bragança District

Holm oak woodlands distribution by slope classes

Holm oak woodlands distribution by position in the slope

Holm oak woodlands distribution by distance to streams classes

Potential for holm oak in fire hazard reduction strategies

- Overall limited conditions for fire prevention corridor/network establishment in the district
 - Holm oak area
 - Our data: 16,789 ha (8.8% of forest area)
 - Clustered/fragmented distribution
- However, some potential results from
 - Corridors in river valleys
 - Abundant locally in some areas
 - Often associated with the meadows/riparian forest system (to be analyzed in the near future)

Bragança District

Final conclusion

- Holm oak woodlands show a high degree of fire resistance
 - Changes in fire behavior in edges seem to indicate a strong possibility of self extinction
- Current distribution limits the use of holm oak woodlands in fire hazard reduction for the entire district but some potential exists locally and in combination with other landscape elements

Acknowledgments

Parque Natural de Montesinho

Câmara Municipal de Bragança

Fundo Florestal Permanente partially funded this research through Project 2006.09.001200.3: "Papel regulador dos azinhais na propagação de incêndios florestais: definição de medidas de ordenamento e gestão à escala da paisagem"