Reestruturação Urbanística de Carcavelos-Sul – Implicações sobre a evolução sedimentar na Praia de Carcavelos

Ramiro Neves, Prof. Associado do IST

Resumo

A dinâmica sedimentar na praia de Carcavelos depende do regime de correntes e da ondulação na região. As correntes são dominadas pela maré e pela morfologia da costa, sendo a corrente média dirigida de poente para nascente, originando transporte residual nesse sentido. A ondulação é gerada no oceano e por conseguinte a propagação é também globalmente de poente para nascente.

Os sedimentos na região da embocadura do estuário do Tejo são maioritariamente provenientes do estuário e são redistribuídos na região pelas correntes de maré e pela sua interacção com a ondulação. A dinâmica sedimentar das praias depende das correntes, que se têm mantido ao longo do tempo e da afluência de novos sedimentos, que globalmente tem diminuído por via da exploração de areia para a construção e por via do controlo das cheias decorrente da construção de barragens. Em caso de redução da afluência de novos sedimentos a praia evolui de acordo com as características morfológicas e geológicas da região.

A generalidade das Praias da Costa do Estoril está encaixada em pequenas baías limitadas por zonas rochosas onde são retidos sedimentos da deriva litoral. Se a dinâmica litoral dos sedimentos se alterar por se alterar o escoamento ou por o fornecimento de sedimentos baixar excessivamente, estas praias não poderão deslocar-se para terra por o substrato ser rochoso e por isso não poder fornecer sedimentos localmente, ao contrário do que acontece com as praias localizadas sobre zonas dunares ou em região de falésia arenosa.

Nestas condições podemos dizer que a reestruturação urbanística de Carcavelos-sul não terá qualquer influência sobre o futuro do areal da Praia de Carcavelos porque (1) não altera as correntes e por isso não interfere nos processos de transporte e (2) a região tem substrato rochoso e por isso não pode ser fonte de sedimentos.

Hidrodinâmica da Embocadura do Estuário do Tejo

A hidrodinâmica da embocadura do estuário do Tejo é condicionada pelo escoamento no estuário (forçado essencialmente pela maré) e pelo escoamento na zona oceânica adjacente e em condições de cheia pelo próprio caudal do Rio Tejo. A Figura 1 mostra um campo de velocidades numa situação de vazante de caudal médio do rio. É bem visível o jacto de saída do estuário que condiciona o escoamento na embocadura do estuário durante a vazante. A Figura 2 Mostra o escoamento em enchente. A comparação das duas permite observar que em frente à Praia de Carcavelos a corrente de enchente é mais intensa do que a de vazante. A Figura 3 mostra a velocidasde residual, i.e. a velocidade média num ciclo de maré. Se as correntes de enchente e de vazante fossem tivessem a mesma intensidade e sentidos opostos a velocidade residual seria nula. A velocidade residual dá por conseguinte a tendência do transporte pelas correntes e mostra que na zona de Carcavelos (e na Costa do Estoril em geral) o transporte de sedimentos pelas correntes é de poente para nascente. A Figura 4 mostra o escoamento

de vazante em situação de cheia e mostra que as velocidades podem ser muito superiores às velocidades em condições normais, até muito longe do estuário. Campos hor+arios de velocidades podem ser consultados em http://forecast.maretec.org/maps tagusmouth.asp.

A Figura 5 mostra o campo de ondas numa situação normal na costa Portuguesa (http://www.maretec.mohid.com/ww3/) e a Figura 6 (http://www.surfersoracle.com) mostra o detalhe do campo se ondas na Costa do Estoril. As duas figuras mostram a protecção exercida pelo morfologia da costa e a segunda mostra a variabilidade espacial da ondulação na embocadura do Tejo. Estas figuras mostram que na Costa do Estoril as ondas têm uma componente importante de deslocamento paralelo à costa, de Poente para Nascente, reforçando a tendência de movimentação dos sedimentos para Nascente.

Regime sedimentar na costa do Estoril

Com base na Hidrodinâmica da costa do Estoril poderemos dizer que os sedimentos são transportados de Poente para Nascente. O facto de não existirem arribas arenosas a poente permite dizer que os sedimentos que são transportados ao longo da costa têm que ser provenientes do estuário. A circulação residual nesta zona mostra o vórtice responsável pela movimentação dos sedimentos.

As arribas rochosas existentes na Costa do Estoril são uma consequência deste padrão de circulação. A ondulação na região não permite a acumulação de sedimentos e não existem fontes de sedimentos em terra, pelo que a única costa estável nessas regiões é uma costa rochosa. Nas pequenas baías localizadas ao longo da costa são retidos sedimentos que fazem parte deste sistema dinâmico que transporta continuamente sedimentos ao largo para poente e junto à costa para nascente. As situações de cheia são determinantes para o transporte de sedimentos da zona próxima da embocadura para o largo.

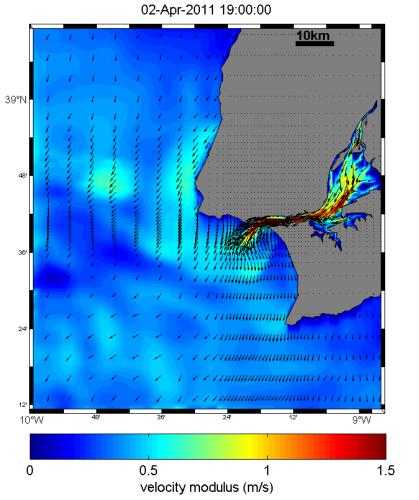


Figura 1: campo de velocidades numa situação de vazante numa situação de caudal do Tejo médio. http://forecast.maretec.org/maps_tagusmouth.asp

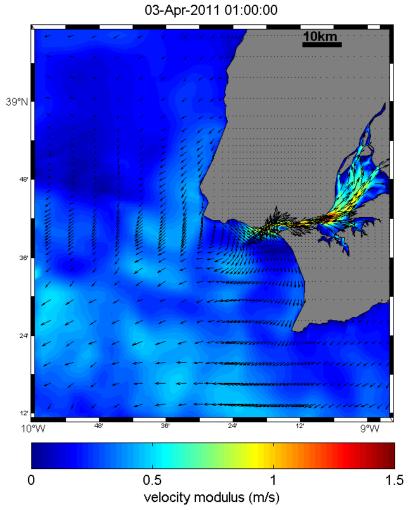


Figura 2: campo de velocidades numa situação de enchente. http://forecast.maretec.org/maps_tagusmouth.asp

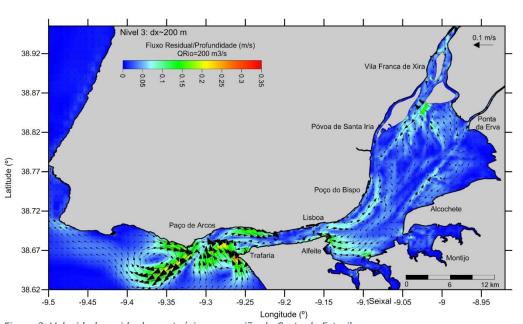


Figura 3: Velocidade residual no estuário e na região da Costa do Estoril

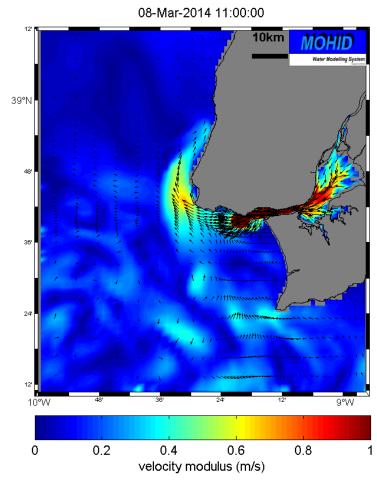


Figura 4: Escoamento em vazante numa situação de cheia do Rio Tejo (http://forecast.maretec.org/maps_tagusmouth.asp)

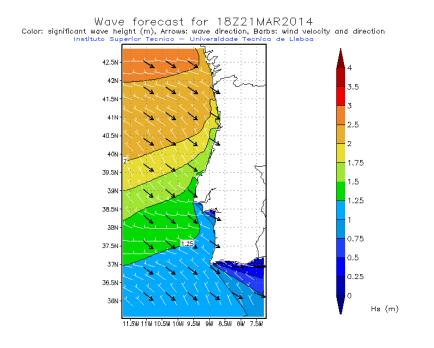


Figura 5: Campo de ondas numa situação típica (http://www.maretec.mohid.com/ww3/)

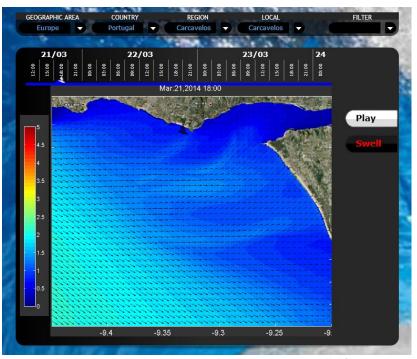


Figura 6: Detalhe do campo de ondas na embocadura numa situação típica (http://www.surfersoracle.com)

Conclusão

Como consequência da hidrodinâmica e da geologia na região da Praia de Carcavelos, a Reestruturação Urbanística de Carcavelos-Sul não terá qualquer consequência para a dinâmica dos sedimentos, nem condicionará a adaptação da praia num cenário de alterações climáticas. O cenário seria diferente se a praia estivesse numa duna ou junto a uma falésia arenosa.